Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Evid Based Complement Alternat Med ; 2022: 3997190, 2022.
Article in English | MEDLINE | ID: covidwho-2285986

ABSTRACT

Quercetin, a natural flavonoid compound with a widespread occurrence throughout the plant kingdom, exhibits a variety of pharmacological activities. Because of the wide spectrum of health-promoting effects, quercetin has attracted much attention of dietitians and medicinal chemists. An updated review of the literature on quercetin was performed using PubMed, Embase, and Science Direct databases. This article presents an overview of recent developments in pharmacological activities of quercetin including anti-SARS-CoV-2, antioxidant, anticancer, antiaging, antiviral, and anti-inflammatory activities as well as the mechanism of actions involved. The biological activities of quercetin were evaluated both in vitro and in vivo, involving a number of cell lines and animal models, but metabolic mechanisms of quercetin in the human body are not clear. Therefore, further large sample clinical studies are needed to determine the appropriate dosage and form of quercetin for the treatment of the disease.

2.
Biosensors (Basel) ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2238776

ABSTRACT

Even with the widespread uptake of vaccines, the SARS-CoV-2-induced COVID-19 pandemic continues to overwhelm many healthcare systems worldwide. Consequently, massive scale molecular diagnostic testing remains a key strategy to control the ongoing pandemic, and the need for instrument-free, economic and easy-to-use molecular diagnostic alternatives to PCR remains a goal of many healthcare providers, including WHO. We developed a test (Repvit) based on gold nanoparticles that can detect SARS-CoV-2 RNA directly from nasopharyngeal swab or saliva samples with a limit of detection (LOD) of 2.1 × 105 copies mL-1 by the naked eye (or 8 × 104 copies mL-1 by spectrophotometer) in less than 20 min, without the need for any instrumentation, and with a manufacturing price of <$1. We tested this technology on 1143 clinical samples from RNA extracted from nasopharyngeal swabs (n = 188), directly from saliva samples (n = 635; assayed by spectrophotometer) and nasopharyngeal swabs (n = 320) from multiple centers and obtained sensitivity values of 92.86%, 93.75% and 94.57% and specificities of 93.22%, 97.96% and 94.76%, respectively. To our knowledge, this is the first description of a colloidal nanoparticle assay that allows for rapid nucleic acid detection at clinically relevant sensitivity without the need for external instrumentation that could be used in resource-limited settings or for self-testing.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Colorimetry , Saliva , RNA, Viral , SARS-CoV-2 , Gold , Pandemics , Nasopharynx , Specimen Handling
3.
Evidence-based complementary and alternative medicine : eCAM ; 2022, 2022.
Article in English | EuropePMC | ID: covidwho-2157191

ABSTRACT

Quercetin, a natural flavonoid compound with a widespread occurrence throughout the plant kingdom, exhibits a variety of pharmacological activities. Because of the wide spectrum of health-promoting effects, quercetin has attracted much attention of dietitians and medicinal chemists. An updated review of the literature on quercetin was performed using PubMed, Embase, and Science Direct databases. This article presents an overview of recent developments in pharmacological activities of quercetin including anti-SARS-CoV-2, antioxidant, anticancer, antiaging, antiviral, and anti-inflammatory activities as well as the mechanism of actions involved. The biological activities of quercetin were evaluated both in vitro and in vivo, involving a number of cell lines and animal models, but metabolic mechanisms of quercetin in the human body are not clear. Therefore, further large sample clinical studies are needed to determine the appropriate dosage and form of quercetin for the treatment of the disease.

4.
Front Bioeng Biotechnol ; 10: 986233, 2022.
Article in English | MEDLINE | ID: covidwho-2071067

ABSTRACT

CRISPR/Cas technology originated from the immune mechanism of archaea and bacteria and was awarded the Nobel Prize in Chemistry in 2020 for its success in gene editing. Molecular diagnostics is highly valued globally for its development as a new generation of diagnostic technology. An increasing number of studies have shown that CRISPR/Cas technology can be integrated with biosensors and bioassays for molecular diagnostics. CRISPR-based detection has attracted much attention as highly specific and sensitive sensors with easily programmable and device-independent capabilities. The nucleic acid-based detection approach is one of the most sensitive and specific diagnostic methods. With further research, it holds promise for detecting other biomarkers such as small molecules and proteins. Therefore, it is worthwhile to explore the prospects of CRISPR technology in biosensing and summarize its application strategies in molecular diagnostics. This review provides a synopsis of CRISPR biosensing strategies and recent advances from nucleic acids to other non-nucleic small molecules or analytes such as proteins and presents the challenges and perspectives of CRISPR biosensors and bioassays.

5.
Cell Res ; 31(12): 1244-1262, 2021 12.
Article in English | MEDLINE | ID: covidwho-1493090

ABSTRACT

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.0198) and less time required for symptoms remission (P = 0.0194) than those who received placebo. Based on chest images, both severe and critical patients treated with MSCs showed improvement by day 7 (P = 0.0099) and day 21 (P = 0.0084). MSC-treated patients had fewer adverse events. MSC infusion reduced the levels of C-reactive protein, proinflammatory cytokines, and neutrophil extracellular traps (NETs) and promoted the maintenance of SARS-CoV-2-specific antibodies. To explore how MSCs modulate the immune system, we employed single-cell RNA sequencing analysis on peripheral blood. Our analysis identified a novel subpopulation of VNN2+ hematopoietic stem/progenitor-like (HSPC-like) cells expressing CSF3R and PTPRE that were mobilized following MSC infusion. Genes encoding chemotaxis factors - CX3CR1 and L-selectin - were upregulated in various immune cells. MSC treatment also regulated B cell subsets and increased the expression of costimulatory CD28 in T cells in vivo and in vitro. In addition, an in vivo mouse study confirmed that MSCs suppressed NET release and reduced venous thrombosis by upregulating kindlin-3 signaling. Together, our results underscore the role of MSCs in improving COVID-19 patient outcomes via maintenance of immune homeostasis.


Subject(s)
COVID-19/therapy , Immunomodulation , Mesenchymal Stem Cell Transplantation , Aged , Animals , Antibodies, Viral/blood , B-Lymphocyte Subsets/cytology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , C-Reactive Protein/analysis , COVID-19/immunology , COVID-19/virology , Cytokines/genetics , Cytokines/metabolism , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Extracellular Traps/metabolism , Female , Humans , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , SARS-CoV-2/isolation & purification , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Venous Thrombosis/metabolism , Venous Thrombosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL